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A new approach to the solution of inverse problems of gas dynamics is considered, based on the use of 

the predictive-model method [l] using an algorithm with Green’s matrix, described earlier in [2] for the 

case of finite-dimensional control systems. This approach enables one to obtain an analytic expression 

for the generalized external forces, which considerably simplifies the procedure for finding a solution 

of the inverse problem. An example for the system of equations of one-dimensional gas dynamics is 

given. 

1. FORMULATION OF THE PROBLEM 

Consider the system of equations of one-dimensional gas dynamics in the region Q = Q+ 
aQ E R’, Q = {t, K t E [0, Z’j, r E [0, R(t)]} in the form of a vector differential equation in normal 
form 

(1.1) 

with initial and boundary conditions 

w(0, f) = wO(r), S(w(t,O), w(t, R), r;t) = 0 (1.2) 

Here w(t, r) E L.:(g) is the vector of the gas-dynamic parameters, F(w, wr) EC’ is a vector- 
function which satisfies the conditions of hyperbolicity [3]: (1) all the eigenvalues of the matrix 
A = aF/aw, are real, and (2) there is a basis in the space E3, consisting of the left eigenvectors 
of the matrix A, f(t, r) E L:(Q) is a vector function which has the meaning of the generalized 
external forces, and S(w(t, 0), w(t, R), r, t) EC* is a vector function which ensures that the 
initial and boundary conditions are matched: S(wO(O), w’(R), I, 0) = 0. We will assume that f(t) 
r) uniquely defines the generalized solution of problem (l.l), (1.2). 

We will assume that we are given the programme of the motion of the system considered in 
the form of the state vector cp(t, r) E L.?JQ). 

The problem consists of determining the vector f,(r, r) for which the programmed motion 
cp(t, r) is one of the possible motions of system (l.l), (1.2). 

tPrik1. Mat. Mekh. Vol. 58. No. 5, pp. 103-109, 1994. 
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2. METHOD OF SOLUTION 

According to Hamilton’s principle of least action we can write the functional that is 
stationary along the 
form 

trajectory of the programmed motion cp(t, r) of system (l.l), (1.2) in the 

where K is a certain 

&[w]= II w(t,r)-&r)Il+ f/,(K-‘f.f) (2.1) 

positive-definite matrix of quadratic form, and II. II and (.,.) are the norm 
and scalar product in L:(Q), respectively. 

The problem of finding fo($, r) can then be treated as the problem of minimizing the 
functional (2.1) 

Jelwl+ i;f, w E &CT>, f e G(Q) 

with constraints specified in the form (l.l), (1.2). 
It has been shown (see, for example, [4]), that the complexity of the problem can be reduced 

considerably by minimizing the functional of generalized work 

Q-2) 

Note that the case when II K-’ II = 0 is of no interest since there is no guarantee here of the 
uniqueness of the element f, E L:(Q) [5], which contradicts the physical meaning of the 
problem. 

Consider the Lyapunov functional of the form 

V[r,w]=j~[~(~,r)-cp(s,r)]~drd+~~jf~(s,r)K-’f(s,rfdrd 
20 IO 

We isolate an arbitrary internal point <(t, r) of the region Q and the region Q, of small 
measure mesQ, = rn, > 0, lying completely inside Q and containing c as an internal point. We 
specify the variation of the function w(t, r) by the following formula [6] 

c>o, o,r)Ea 
6w(t,r) = o 

i ’ (ttr)~e, 

We define the functional derivative for the functional as follows [6]: 

@[WI _ z[w+isw]-z[w] 
6W Ii&L II 6w liti 

Tizeorem. For process (l.l), (1.2) and the programmed motion rp(l, r) an extremum of the 
functional (2.2) is reached when 
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where y(s, 5 w(t, r)) is the free motion (f(s, 6) = 0) of system (l.l), (1.2) in the section s E [t, T], 
which depends on the current state (w (t, r), and G * (t, s, r, 5) is Green’s matrix, conjugate with 
respect to the variables r and t), of the linearized initial boundary-value problem (1.1) (1.2) 

i3G i3F G 8F X --- ---=&r-s@(r&) 
at aw aw, ar 

and the derivatives dF/&v, dF/aw, are calculated on the trajectories of the free motion y(s, 5, 
w(t, r)). 

Proof. By the method of dynamic programming, a minimum of the functional (2.2) is 
reached on the solution of the functional equation 

min z+H+iy [f’K_*f+f,TK-‘f,]dr =O 
f 20 

(2.3) 

written for the Lyapunov functional V[f, w], which depends parametrically on time and is 
defined on the set of functions w(t, r) which satisfying system (l.l), (1.2). 

We can represent the derivative dV/dt in the region Q, taking (1.1) into account, in the form 
Fl 

R 6v[t, we dvk WI _ am wl 
dt 

-+j - at o aw C-F+ fW 

The solution of the variational problem in question is then the function 

f&, r) = -K W[t, w] /6w (2.4) 

where V is the solution of the linear functional equation 

dVft, WI R 6V[r,vv] -_ 
dt 

I - Rw, w, )dr = -~[t, w] 
0 6w 

(2.5) 

This can be checked (see, for example, [4]) by substituting the expression for dV/dt into (2.3) 
and subsequent minimization with respect to fusing (2.5). It has to be said that in expression 
(2.4) the argument f&, r) contains w(t, r)-the free element of phase space and, consequently, 
this expression must be understood as the inverse relationship, and not programmed control, 
which minimizes the specified functional. 

Note that Eq. (2.5) is related to the equation of the characteristic 

aw I at = -F(w, w,) GW 

for which dV ldt = -H and, correspondingly. 

In the last equation, y is the phase trajectory of system (2.6) with the initial conditions y(t, S. 
r) Iszl= w(t, r). 

Consider the e-neighbourhood of y(r, S, r) lSZI in the space L;(Q). For a limited variation of 
the initial conditions w(t, 13 +6w(r, r) IIG:,,. <E we will denote the variation of the solution of 
Eq. (2.6) by 

g(r, s, r) = y(t, s, r. w + SW) - y(t, s, r, w) 
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In view of (2.7) we have 

W[t, Yl = i i E [s, YO ,s, r, w(r, r))l go, s, rw-ds 
t 0 

where g(t, S, r) is the solution of the homogeneous initial boundary-value problem 

.3g aF ag aF --- 
as aw, i5ZG g=” 
go, s, ds=t= wt, r), g(t, s, 0) = go, s, R) = 0 

This solution, by virtue of the linearity of the boundary-value problem, can be represented in 
the form (G( t, s, r, 5) is Green’s matrix) 

g(t,s,r> = ; G(r,s,r,S&W,&&n (2.8) 
0 

Then, we have for the variation of the functional V 

(2.9) 

where G* is a function conjugate to G with respect to the variables r and 5, and G and &H/&w 
are on the trajectory of free motion [2] of system (2.6). 

Using expression (2.9) to calculate f,, from (2.4) we obtain 

f,(t,r)=-K i 1 G*(t,s,r,Q Ws. Y(s, 5. W, r))l d5ds 
t 0 6W 

(2.10) 

which proves the theorem. 
Expression (2.10) enables us to construct a vector-function & as a solution of the inverse 

problem (l.l), (1.2) in the sense of a minimum of the functional of generalized work (2.2). 
The explicit form of the solution obtained enables us to reduce considerably the work 

involved in obtaining the solution of the inverse problem, and in certain cases enables us to 
find a solution when traditional methods give no result due to the considerably complexity and 
length of the analysis. 

Suppose the system of equations of gas dynamics describes the expansion of a spherical volume in a 

medium with a black pressure. The corresponding equations in spherical coordinates have the form 

3. EXAMPLE 

1 + 2 + u$ + -- = ft(t,r) 
P ar 

dp+&+yp&+2pu.= 
& & ar 

f3O.r) 
r 

where U, p and p are the gas-dynamic parameters of the perturbed medium, y = 1.4 is the adiabatic index, 
and f,, f, and f, are sinks or sources of mass, momentum and energy, respectively, defined in the region 

of smooth flow. 
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The boundary conditions are specified at the centre r = 0 
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‘U(t, 0) = 0 (3.2) 

and on the front I = r(t) of the shock wave, which propagates into the unperturbed medium (u = u), = 0, 

p = p1 = const, p = p1 = const)with a velocity D = dR/ dt. The dimensionless forms [7] of the parameters on 
the shock-wave front have the form 

D=([y+l)p~+y-1]/2)% 
(3.3) 

The initial conditions ~(0, r)= 2)“(r), ~(0, r)= p”(r), ~(0, r)= p’(r), r~[0, R (r)] represent the self- 
similar solution of the problem of a point explosion [7]. 

The programmed motion is specified on the shock-wave front when t E [&, I’* + Z’] 

q(r.R)=q,&)=(u+R(t), P:(t), &))’ (3.4) 

For system (3.1), the boundary conditions (3.2) and (3.3) and the programed motion (3.4), we will seek 
a solution of the inverse problem f, = (f,,, f,, f,) f rom the condition for a minimum of the functional 

J= $v(t)-qR(t)J2dt + ii jR(fTK-‘f+foTK-‘f~)drdt 
20 200 

(35) 

(w(t) = (u&t)* Pa(r), ~~(f))T) 

Then, by the statement of the theorem 

f,(o)=-K 7 4 G*(t,s,r,5)Iyts,R,w(t,r))-~pR(s)ld~d~ 

where G is Green’s matrix of the initial boundary-value problem 

E+* 
at $f + BG = W-s)&r&), G(t,s,O&) 

where 

, B= 

1 aP _-- 
p* ar 

au 2U 
-+- 
& r 

0 

= G(t,s,R(t),Q = 0 

are calculated on the free motion y(s, E,, w(f, r)) of system (3.1)-(3.3). 
In the computational algorithm the number of spatial coordinate nodes was taken to be 15. The 

distributed gas-dynamic parameters were approximated by the spline-function method. The Courant 
number was chosen, from considerations of computational stability, to be equal to 0.75 for a value of the 
step in dimensionless time z=lOd. The sliding interval of the calculation T = 5~. The overall time 

required for the calculation is 302. The coefficients of the diagonal matrix K were chosen experimentally 
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from the condition for the programmed motion to be identical with the solution of problem (3.1)-(3.3) 
and was taken to be kii = 10m”‘. The time of the beginning of the calculations t, It8 = 5.455 x lOa and the 
dimensionless parameters on the front in this case R(t,,)/Rb =4.942x10-* were determined by the 
following values 

s = 30.55; & = 1122; !& = 5,969 
C PI PI 

Here tg and R, are the dynamic time and the length, respectively [7], c is the velocity of sound in the 

unperturbed medium, and p1 and p1 are the density and pressure of the medium under normal 

conditions. 
The results of calculations for the time interval considered can be approximated by linear relations 

U&-U* 
P = k 1’ 

U’ 
C 

Pht = kpr; 

Pl 

!?pt = k,t 

where k, = 2.86 x lo’, k, = 2.03 x 106and k, = 6.0 for the unperturbed motion, k, =3.83x lo’, k, = 

2.63~10~ and k, =86.6 for the programmed motion, and k, =3.83x105, k, =2.70x106 and k, =83.3 for 

the solution of problem (3.1)-(3.3), (3.5) obtained using the proposed approach. Figures l-3 show graphs 
of the functions fofol, fo2 and &, which are the solution of the inverse problem in question. 

Fig. 1. 
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Fig. 2. 
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Fig. 3. 
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